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ABSTRACT

In the past, human body models have been developed by assuming simple
geometric shapes for the components of the human body in order to,pfedict the
mass properties, i.e. mass, center of mass, and inertia tensor. In this study
a new personalized method of.predicting cdmponent mass propertfes is developed,
.based on experimental data for whole-body mass propertfes for three body
~ positions where only one component is moved. Also needed, however, are esti-
mates for the mass and sum of‘the moments of inertia of each component.

Additionally, the contribution of outer garments or é suit to the mass
properties can be included in the prediction if it is assumed that the compo-
nents of the outer covering ére rigid bodies that move negligibly relative to

corresponding body components.

iv




TABLE OF CONTENTS

Acknow]édgments ...........................
ADSEPACE. v v e e e e e e e e e e e e e e e ;‘; “ e
List of Figures . . . . . &« ¢ v v v v v v v o v v v e e e e e e .
Chapter 1 Introduction ............. e e e e e e e
Purpose . . . . . e e e e e e e e e e e e e e
Background . . . . . . . . . R .
Study Structure . . . . . .. ; ............

Chapter 2 Determination of Whole-Body Mass Properties from Component
Mass Properties with Respect to Component-Fixed Axes . . .

Notation . . . . . . .. .. .. ... e e
Analysis . . . . . . . .. e e e e e e e e e e e e e
Chapter 3 The Hanavan Model . . . . . . . . . . ¢+ . v v v ..

Chapter 4 Determination of Component Mass Properties about'Compbnent-
Fixed AXES . v v v v i i e e e e e e e e e e e e e e e e

Component Centers of Mass. . . . . . . . . e e e e
Component Inertia Tensors. . . . . « « v v v v v . . .

Experimental Determination of Whole-Body Mass
Properties . . . . . . . . e e e e e e .

Consideration of Outer Garments or Suit

Chapter 5 Explanation of the Infinity of Solutions for Component
Inertia Tensors

----------------------

Chapter 6 Suggested Methods for Estimation of Component Masses . . .
Regression Equations . . . . . . . . . . . ... ...

Water Immersion.

-------------------

Inclusion of Outer Garments or Suit in Component
Masses

--------------------------

16
16
17
25

36
37

39
43
43
45

46



Chapter 7 Suggested Methods for Estimation of the Sums of
Component Moments of Inertia

----------------

Hanavan Model

Casts of Subject's Components

ooooooooooooo

Inclusion of Outer Garments or Suit in sj ......

Conclusion . . . . . o e e e e e e e e e e e e e e e

Chapter 8 Limitations

------------------------

Invalidity of Assumptions
Possible Errors in Who]e-Body'Experimenta1 Data‘ c e

Accumulated Errors in Central Component . . . . . . .

Chapter 9 Conclusion

oooooooooooooooooooooooo

Appendix A Computer PROGRAM WHOLE

...................

oooooooooooooooooo

Appendix B Computer PROGRAM PART
Bibliography |

------------------------------

Vita

vi

47
47
18
18
49
50
50
52
52

53,
55
58
62
71



. Figure

LIST OF FIGURES

Page
Vectors and Coordinate Systems . . . . . . . . . .. ... ... -8
Rotation Angles. . . . . . . . .. e e e e e e e e e e e e e 11
The Hanavan Model. . . . . . . e e e e e e e e e e e e e e e 14

Flow Chart of the Determination 6f Component Mass Properties . . 57

vii




CHAPTER 1

“Introduction

Purpose

The motion of a dynamic system depends on the méss properties of the
system, i.e. the mass, center of mass, and inertia tensor. If a human being
fs a part of the system, then the system propebtiés'depend on his or her
contribution. The human's contribution fo mass properties depend on body
position, and hence become a function of -time if the human is in motion.

For many dynamic systems the human'é contribution may be negligible,
as for a 1afge airplane, where the pilot's mass is smai] compared with the
mass of the system. However, there are systems where this is not the case,
for example an astronaut with a pressure sﬁit'and backpack. . For some dynamic
systems, the human may constitute the entife system, e.g. a swimmer, a diver;

a gymnast. Where the human's contribution to the system is significant, é pre-
diction of the syétem dynamics depends upon knowledge of the time history of
the person's mass properties. While é human's mass is directly measurable
(using scales), this is not the case for the other mass propertfes.

The purpose of this study is to develop a method for predicting the
center of mass and the inertia tensor for any human being in any given posi-
tion, with or without outer gafments or suits. Thus, in this étudy, methods
are presented for obtaining the time history of the mass properties of any
particular human being directly from the time history of the bbdy position.-

The means presented for predicting body center of mass and inertia tensor

shall depend upon the following assumptions:




(1) The human body is adequately modeled by a system of rigid bodies
‘connected by joints. | N

(2) There exist valid method for estimating the mass of each body com-
ponent. A review of possible methods is given in Chépter 6.

(3) There exist valid method forAestimating the sum of the three moments
of inertia for each component about component-fixed axes. Possible methods
are discussed in Chapter 7. | |

Assumption (1) above is equivalent td assuming that body components do
not deform appreciably for different body positions. Thfs assumption 1is
questionéb]e for the torso, whose curvable, twistable backbone can make.seem-
ingly significant changes in torso shape. For a suited, backpacked astronaut
thisvassumbtion seems more reasonable because of the restricted mobility im-
posed by currently used equipment.

Assumption (2) arises as a consequence of the fact that there appears
to be no nondestrﬁctive means for -experimentally determining the mass of the
individual body components. There seems no way to diréct]y weigh the
individual body components of a 1iving human because of the unknown forces at
the joint(s) connecting each component to the rest of the body.

Assumption (3) is necessary to provide a needed additional independent
equation relating the component moments of inertia. The necessity for the

introduction of this equation is established in Chapter 5.

Background

Several researchers have attempted to obtain experimental values of the
mass properties for parts of or entire humans. Much of the early work in this
area consisted or obtaining centers of gravity and moments of inertia for

parts of dissected frozen cadavers. Thus Braune and Fischer obtained these
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values for a sample of three (Refs. 2, 3), Fischer later added another one

(Ref. 8), and Dempster added eight more (Ref. 6). Barter used the data thus
obtained fo formulate a set of regression equations estimating the weight of
each cadaver component as a function of total weight (Ref. 1).

Later experimenta1‘work centered on mass propertiés for 1191hg-humans._
Swearingen determined the centers of gravity for 5 living subjects in 67
body positions (Ref. 16). King 1nye$tigated the locus of the center of graVity

for various body positions (Ref. 12). Santschi, DuBois, and Omoto determined
the center of gravity and moments of inertia for 66 subjects in various body
positions by using a complex pendulum (Ref. 15). |

Fow1er'mathematical1y showed how all the mass properties of a spacecraft
- could be experimentally determined in flight by using three independent,
known thrusts (Ref. 9). This method is applicable to a human subject, and
is the only available experimental means of determinfng products of 1nerfia.

More recently, attempts havevbeén méde to model the human in order to
predict mass properties as a function of body position. Hanavan (Ref. 11)
assumed a simple geometric shape for each body component and derived formulas
for inertia moments about component-ffxed axes. DuBois and others improved
Hanavan's model and added a space suit model consisfing of hollow, simply
shaped Yshells" (Ref. 7). Tieber and Lindemuth (Ref. 17) made further modi-
fication of Hanavan's model and also modeled a Gemini space suit. iThey used
an improved set of regression equations developed by Clauser and McConville

(Ref. 4) to obtain estimates for component masses.

Study Structure
 This study first shows how whole-body mass properties can be determined

from component mass properties. In this procedure component-fixed axes are
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employed (Chzpter 2). -Then two methods for obtzining thewe cunponent pro-
perties are presented. The first of these is a model formulated by Ernest
P. Hanavan (Ref. 11), which assumes simple geometric shapes for the components‘
(Chapter 3). The second method is a more general approach, making nd
assumption about component shapes except that they are rigid (Chapter 4).
The necessity for the introduction of an additional equation relating the
component moments in order to implement thisr1atter method is then established
(Chapter 5). This second method depends upon experimental data for who]e-
body mass properties for selected, fixed positions (Chapter 4, page 36),
~estimates of component masses (Chapter 6), and estimates of sums of component
moments of inertia (Chaptef 7). |

A discussion of limitations of the second method and recommendations

for further study are presented (Chapter 8), and finally a conclusion is

given (Chapter 9).




CHAPTER 2

Determination of Whole-Body Mass Properties From
' Component Mass Properties with Respect to
‘ Component-Fixed Axes-

Notation

The notation for this chapter and for the remainder of the study is
as follows:

Scalar Notation

i,J - Subscripts denoting the quantity subscripted is for

component number i or Jj, respectively.

mg - the total body mass.
me - the mass of component i .
n - the total number of body components.
Sj - the sum of the moments of inertia of component j.
' o ' about an axis system centefed at Jj's center of masé.
X> Y» v - aset of rotation angles betwéen the axes of C% - Xyz

and C; - Xz (these angles are more explicitly defined
later). |

I, II, III, ..., N - superscripts denoting the quantity superscipted
“is for a body position denoted by the Roman Numeral ( N
denotes the largest body position number),

AI'II( )‘— an operator denoting the difference between the value

of the quantity within the parentheses evaluated for

position I and the value for position II (any Roman numerals

can be used).




Point and Coordinate System Notation

A -
A-xyz -
CB -
Ci~ -
Ci—xyz -
C. -xyz -
J. -

j
Ji—xyz -
J. -xyz -

Vector Notation

— I-11
b.
J

an arbitrarily located (but known) point.
“an arbitrari]y oriented Cartesian coordinate system
centered at A .

the center of mass of the body.

the center of mass of component i.

a Cartesian coofdinate system centered at Ci with
axes respectively parallel to the axes of A-xyz .

a component-fixed Caftesian coordinate system centered
at Ci'

the joint (pivot point) at the end of component i
closer to the body torso (e.g., the elbow is the fore-
arm's Ji ).

a Cartesian coordinate system centered at Ji with
axes respectively parallel to those of Ci~xyz.

(and thus also parallel to those of A-xyz );-

a Cartesian coordinate system centéred at J, with

axes respectively parallel to those of C% -XyZz.

a 6x1 vector used for notational brevity (defined on
page 30).

the 3x1 vector of Cartesian coordinates of B
relative to A-xyz.

the 3x1 vecfor of Cartesian coordinates of Ci

relative to A-xyz.




RC /3. the 3x1 vector of Cartésian coordinates of Ci

b relative to J5-xyz,
ﬁh%/di - the 3x1 vector of Cartésian'coordinates of Ci
relative to J%-xyz.
-ﬁd - fhe 3x1 vector of Cartesian coordinates of Ji

relative to A-xyz.

The orientation (for a typical position) of some of the points,

coordinate systems, and vectors appears in Figure 1 (next page).

Matrix Notation

I-11
Aj‘ = ET:TTégizs. - a 6x3 matrix used for notational brevity.
J (Tj is defined below).

IB - the who]e-bodyvinertia'tensor (3x3) about

' axes of A-xyz.

Ii - the inertia tensor of component i about
the axes of A-xyz. |

Ii/Ci - the inertia tensor of component i about
the axes of Ci-xyz.

Ii’/Ci - the inertja tensor of component i about
the axes of C% -Xyz.

V§'II - a 6x6 matrix that is a function of the
elements of Tj (exp]fcit]y defined in
Equation (4-8), page 30).

P. - a 3x3 matrix which contains elements result-

ing from application of the parallel axis

theorem. (more explicitly defined in



‘Component i

Figure 1; Vectors and Coordinate Systems



Analysis

The whole-body mass properties (with respect to A-xyz) can be expressed .

HI

Ht

| 111000

Fquations (2-9) and (2-10), page 10).

I-I11

- a 12x6 matrix used for notational brevity.

- a 13x6 matrix used for notational brevity.

in terms of the component properties (with respect to A-xyz) as follows:

Mass

Center of Mass

Inertia Tensor

where the transformation matrix Ti is given by:

But

Also

COSXCOSY
sinycosy

-siny

i
My = m.
B ¥ i
— g -
R = [R m.] /m
B s=i LG4 i B
i
I = I.
B s25 0
R = R + R
C1 Ci/Ji Ji
R, = T.R.,
Ci/Ji i Ci/di

cosysinysinu-sinycosy
sinysinysinutcosycosy
' cosysinu

(2-1)

\

cosyxsinycosutsinysinu
sinysinycosu-cosysinu
COSYCOSH

(2-6)




_ In the above matrix, x, vy, and y are rotation angles illustrated
. in Figure 2. In the fi’eld'of flight mechanics, w, x, and y correspond,
respectively, to aircraft bank, heading, and flight path angles (Ref. 13,
page 44), The orientation of the primed axes with respect to the unprimed
can be described in terms of these three rotation angles. To define these
rotations, two intermediate coordinate systems are introduced whose properties
are as follows: the system Ox]y]z] is obtained from the unprimed system by
means of a rotation y around the z-axis; the system 0x2y222 is obtained
from Ox]y]z] by means of a rotation y around the» y]—axis; the primed
axes system is obtained from Ox2y222 by means of a rotatfon ‘u around the
xz-axis. | |
Substituting Equation (2-5) into Equation‘(2~4) and then substituting
(2-4) into (2-2), the whole-body center of mass becomes:v
_ i |
‘ | Ry = i;z_] (T1.R‘C1,/J1_ +ﬁJ1_) L m, /mB (2-7)
- By applying the parallel axis theorem, it is possible to express Ii
ip terms of Ii/Ci as follows:

I_i = I_i/C + Pi i=],...,n (2“8)

where Pi is a 3x3 matrix whose elements are defined as follows:

Main Diagonal

Elements

i(r)} - | (2-9)

where p, g, r e {1,2,3} and p#q#r.
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Rotation Angles
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Off Diagonal
Elements

Pi(gsr) = m, [RC

(@) - RC.(r)} | | (2-10)
1

-i
where q, r ¢ {1,2,3} and q # r.

Now the inertia tensor can be rotated by a similarity transformation,

! — -
ie., I =TIT ], where T is the transformation matrix from the primed

to the unprimed axes systems (Ref. 10, page 370). Since our trans-

formation is orthogonal, then T’] = TT, where the T superscript indicates

the transpose (Ref. 14, page 207). Thus I = TI'T'.

‘For Ii/C , then, we can write:

.i
T

= Ti Ii'/Ci Ti (2—11)

.i

Substifuting (2-11) into (2-8), we obtain:

_ T o
oot T e T TR (2-12)

Substituting (2-12) into (2-3) results in:

n ,

- T :

g =2 ( Tilje, Ty * P , (2-13)
i=1 i

Note that in Equations (2-7) and (2-13), that while Ti(i=1,...,n)

and Pi(i=1,..w,n) are functions of position, RC!/J (i=1,...,n) and
1779

Ii/Ci (i=1...,n) are not (assuming components are rigid bodies). Equations
(2-7) and (2-13), then, allow us to determine the whole-body mass properties
for any position, given the body position and component mass properties with

respect to component-fixed axes systems. A computer program capable of

accomplishing this (PROGRAM WHOLE) is provided in Appendix A.




CHAPTER 3

‘ . } : The Hanavan Model

A personalized human body model was developed by Ernest P. Hanavan
(Ref. 11), who obtained approximations for the RC%/Ji and Ii'/Ci(i-]"f"n)
by assuming simple geometric shapes for the body components. Figure 3
illustrates his model (from Ref; 11, page 8), and the assumed component shapes '

are indicated below:

1 Head | - right circular ellipsoid of revolution.

2 Upper Torso

3 Lower Torso

right elliptical cylinder.

right elliptical cylinder.

4,5 Hands - spheres.
6,7 Upper Arms = - frustrums of right circular cones.
8;9 Forearms - frustrums of right circular cones.
. : 10,11 Upper Legs - frustrums of right circular cones.
12,13 Lower Legs - frustrums of right circular cones.
14,15 Feet - frustrums of right circular cones.

Using 25 anthropometric body measurements of the person being modeled
(Ref. 11, pagesA9—]O, A-1 through A-3) and Barter's regression equations for
estimating masses of components (see Chapter 6), Hanavan defined his simply
shaped components and provided formulas for componeht mass properties
(Ref! 11, pages 13-24). |

In this way,,persona]ized approximations can be made for whole-body
mass properties in any position. Hanavan cbmpared his model's prediction

with experimental data (Ref. 15), and claims his center of mass

13
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Figure 3. Hanavan's Mode]
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is generally within 0.7 inches and moments of inertia are generally within
10% of experimental values from pendu1um tests of live subjects. For prelim-
inary design studies, this may be sufficient1y accurate. Where better accuracy
is needed, the méthod presented by the present Study (Chaptef 4) can‘be used.

" The work of Hanavan was expanded by J. Dubois and others (Ref. 7)
who added a mode]l pressure suit consisting‘of "shells" of similar shapes
surrounding eaéh component. They aiso improved Hanavan's original model by
assuming the torso hollow (thus taking air-filled lungs into account).

Further improvement of Hanavan's work was made by Tieber and Lindemuth

(Ref. 17). Though the shape of Hanavan's components is not radically altered,
sivot pointé are changed (Ref. 17, pages 16—21).‘ ATso; a different set of
regression equations is used for estimating component masses (discussed in
Chapter 6). A pressure suit model, similar to that of Dubois, is also pro-
vided (Ref. 17, pages 23-34), based on a G-d4c suit (used in the Gemini
sroject). Tieber and Lihdemuth claimed that the center of gravity errors

are generally reduced to less than 0.3 inches, but the momeht of inertia

errors are generally as high as 15% of experiménta1 values.

The present study presenté a more general method for obtaining
;ﬁé/Ji and Ii;Ci(i=]""’n) than Hanavan's model (Chapter 4). But this
rethod, it will be seen, depends on obtaining estimates for the sums of
ccoponent inertia moments. Hanavan's model provides one possible method of -
zttaining these estimates (see Chaptef 7).

This more general méthod will also depend on estimates of component

rasses. Barter's regression equations will be presented in Chapter 6 as a

wosnible estimation method.
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CHAPTER 4

Determination of Component Mass Properties
About Component-Fixed Axes

Overview
As was shown in Chapter 2, whole-body mass propérties for any position
can be found if component mass properties about component-fixed axes are known.
Hanavan's mode1 of the previous chapter obtained these by assuming simple .
geometric shapes for the components. This chapter provides a more general
method which assumes nothing about the component shapes, only that the
components are rigid bodiés. It does depend on the assumption that the
following information can be obtained:
(1) Experimental data for the Who1e—body center of mass and
the inertia tensor for a living human (discussed later in this chapter).
(2). An estimate for the mass of each of the various components
of the body (defined by the researcher). Chapter 6 presents two methods,
one using either of the two sets of regression equations referred to
in Chapter 3, the other using experimental data fqr casts of the
particular subject's body parts.
(3) An estimate for the sum of the three moments of 1hertia for
each bbdy component. Chaptek 7 provides two methods, one using Hanavan's

simply shaped components, the other USing experimental data for casts

of the subject's body parts.
The basis for-the solution for component mass properties is the formation
4

¢ what will be called mass property difference equations. These are formed

ty subtracting the equations for whole-body mass properties (Equations (2-7)

16




17
and (2-13)) for selected body positions. Using'tﬁe center'of mass difference
equatibn and estimates for component masses, componént centers of mass can
be determined. Using the inertia tensor difference equation, estimates for

component masses, and estimates for sums of component moments of inertia,

~ component inertia tensors can be determined. It will be shown in Chapter 5

that est1mates for sums of component moments of 1nert1a provide a needed

additional independent equation relating elements of component inertia tensors.

Component Centers of Mass

For two different body positions, say I and II, identical except for the

position of one component, say number-j, Equation (2-7) becomes:

R[] ok +®).n/m
g ETIRL VA T RS T

I AL - =11,
Ry = [12 (T, R /9, + Rji) .mi] /mg

Splitting up the summation and subtracting these two equations:

| ! |
=T & IT _ v Rll
R, -R." ZTR ZTR m+ZR m.- ) Ry° m.f /m
B B [1_| i°Cy /J1 o 1C /J seds Ty, Jy B

Equivalently:

1-11,=
A (RB)

e~

Mg

| [AI—II(Ti)] ’R"/J " { RE II(%]’) j' m,

(a-1)

.i

But T and II are identical positions except for the position of component

Y. Thus:



I _ 11 - ., .
T'i = T'i =1, ...on (i #3)
I IT
R = R i=1, s N

Ji J~i

Hence Equation (4-1) becomes:
I-11,5 ~ 1-11 5
M [A (Rg) ] - [A (Tj)] Re,ra. ™
3 d
Equivalently:

a1 )} R, - (/1) [A“”m } (4-2)
[ J Cj/Jj B | B |

=11

In the above equation ﬁé and Rg. can be determined by experiment |

(sce page ), as can mg . The quantity my can be estimated (see
page ). The matrices 'T§ and T§I represent arbitrarily selected, known
positions. Thus Equation (4-2) represents a system of three linear equations

I-11 .
(Tj) is
nonsingular, RC'/J can be solved for directly in Equation (4-2). However,
i3 o

I-11
(

~in three unknowns, the elements of ﬁbl/d . Clearly, if A
: N
the following analysis proves that A Tj) is singular for all choices of
positions I and II.

The orientation of the component-fixed axes Ci-xyz 1is arbitrary. Thus,

j
f without loss of generality, Cj—xyz can be oriented such that xI = 0°,
i’ 'J = 0°, and uI = 0° for position I, for which:
! 100

I

T, =
3 010
0 0 1

For any other position, II:




cosxucosyII costIsinyIIsinuII cosxusiny”cosuII
—sianIcosuII +sianIsinuII
T;I = SianICOSyII S'ianISinYHS'inuII SianISinYIICOSuH
‘ +costcosuII ecostIsinuII
-sinyII cosstinuII . cosyucosuII .
Hence:
1~costc05yII —costIsinyIIsinuII -COsx¥I$inyIIcosuI£w
+sianIc05u;I —sianIsinuII
:LJI(Tj) = -sianICOSYII l-sianIsinyIIsinuII —sianIsinYIIcosuII
--cosxncosuII vcostIsinuII
sinyII -cosYIIsinuII 1-cosYIIcosuII

The determinent of the above matrix turns out to be zero. This

4

3 seen by expanding the determinent and substituting appropriate trigono-

I-11,
(

. metric identities. Consequently, for any selection of positions I and II,

e

Seoratrix A Tj) is singular.

Fegiee

% Hence Equation (4-2) represents a dependent system of equations

% EELR T page 133), and therefore does not uniquely determine the

% alarents of *b'/J . However, if an arbitrary third position (III) is

NN ' |

i “itiluced, the following difference equation results, identical in form to
P fanien (4-2): |

. -1, ] = 1111, P

Twocorbination of Equations (4-2) and (4-3) constitute a system of

& tiattens in three unknowns. For judicious selection of positions I,




20
IT, and III, it turns out that this system can contain three independent
equations, thus determining a unique solution fof ﬁbj/dj . However, it'may
be inconvenient to isolate three independent equations. An alternative
solution of the system which does not require this isolation does exist, and
~its derivation follows. .

Combining Equations (4-2) and (4-3) into one equation:

AI_II(T¢) B AI-II(ﬁ )
s | Re, [mB/mj T
A (T 7375 A (Rg)
AI—II(T ) , v
Defining the matrix Aj = __T:TTT-J_5 and multiplying the above
A (T,
J
equation by Agz
ATAR. (ma/m.) AT 2Ry (4-4)
: T = (Mg/ms T s O B -
| Jd Cj/Jj B 37 7 AI III(RB)
: But for any matrix Aj, AgAj “and Aj have the same rank, or the
; futber of independent rows (or columns) (Ref. 14, page 139). Thus
T ‘ T, - , T
{f Aj has rank 3, then so has AjAj. But AjAj is 3x3; hence, AjAj

rist have an inverse if it has rank 3. Therefore, if Aj is of rank 3,

i then Equatioh (4-4) can be solved directly for C'/d as follows:
RN

| 1-11,=
= - A (R,)
Re - Ta 21,7 B
Cj/Jj (mB/mj) (AjAj) Aj AI‘III(ﬁé)

(4-5)

i Whether or not Aj has rank 3 depends upon the selection of positions
i, i1, and TI1. Two specific examples follow, the first of which is an Aj
57 renk 3, the second of which is an Aj of rank 2, thus substantiating the

§ crrifer statement that the selection of body positions must be judicious.




Examp]é 1

Let positions I, II, III have rotation angles as indicated below.

POSITION X Y u
I 0. 0 0
1 0 sin"'(3/5) 0
111 0 0 sin '(3/5)
For this selection of positions:
1 0 O 4/5 0 - 3/5 1 0 0
e foo1 oo Tl o 1 o] T lo 45 -ys
0 1 -3/5 0 4/5 ' 0 3/5 4/5
; Thus: l
! I o]
{ 1/5 0 -3/5
E AI—II(TJ_) 0 0 0
! _ | mzemsrz-v- _ 13/5 0 1/5
e A, I-I17 = |22l Dal 102
: /5  3/5
P 0 =35 /5
é. For the above matrix Aj:
. | 0.4 0
¥ AT, = 0 0.4
JJ
: 0 0.8
? a«t:n is clearly of full rank. Thus -(A}Aj)_] exists and is in fact as
fg AR
? 25 0 0
T, -1
. (Ah) = 0 25 0
¥ 0 0 1.25




-

Therefore, for this selection of body positions Equation (4-7) will

follows, this will not be the case.

Example 2

POSITION

" For this example let positions I, II, III have rotation angles as

indicated below.

X Y q
I 0 0 0
11 0 sin"1(3/5) 0
111 0 sin” (4/5) 0
For this selection of positions:
1 0 O 45 0 3/5 3/5
ne=lo 1o mtelo 1 of el o
0 0 1 -3/5 0 4/5 -4/5
Thus :
"1/5 0 -3/5 |
I_H(T) 0 0 0
e\ il - ([ 3/5...0___1/5
J AI'I”(TJ) 2/5 0 -4/5
R 0 0 0
4/5 0  2/5 |

Fur the above matrix A:

1.2 0 0
T
AA. =
JAJ 0 0
0 1.2

provide a unique solution for the elements of ‘Ebt/d . In Example 2, which
NN :

4/5

3/5
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which is clearly of rank 2. Therefore, A}A\j will not have an inverse.

The matrix Aj provides only two independent equations and thus does not

“determine a unique value for the elements of ﬁb’/d .
' 373

An apparent (though not proved) general rule for the selection of body

positions to insure a unique value for ﬁt

5 1 = II = I11 .
Rci/di, RCi/Ji , and RCi/J. are not all three coplanar. Thus, in

Example 1, where these three vectors did not lie in the same plane, a unique

. is to choose positions such that
3 J

value for'ﬁbj/dj was determined. But for-Examb]e 2, where the vectors
were coplanar, a unique value was not determined.

In the analysis of this section, it was tacitly assumed that for
component j, 'it is possible to define positions I,. 11, ~and III such that
only j is different. But this is gg;_pbssib]e for some components, for
example if the thigh position is different, then so must the calf and foot
msitions bé different. More generally, Equation (4-5) 15 applicable directly
te.ly to those components connected to 6n1y one other componeht, hereafter
:21led external components. Those componénts which are connected to two
ather components shall be called internal components. Note that the central
szngonent from which the 1imbs emanate fit into neither of these categories
3t temponents, as more than two components are connected to it. For conven;
's*oe, this central component will be numbered n . TypicalTy, of course,
1y central component is simply the torso; but the fesearcher has the option
%+ frolude the head and neck as part of the central éomponent if they are
#iiu002 to be immobile. This assumption may be quite reasonable for a

¥i,re-suited astronaut, with restricted head mobility. |

Ha-

“thod for determining the center of mass for any internal component
© o'y wne component external to it is now presented. Using the method

et presented, the center of mass of the external component can be
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determined. For notational convenience let this external joint be numbered
j*1 and the intérna] component whose center of mass we seek be numbered j.
Then difference equations similar to Equations (4-2) and (4-3).can‘be formed

but will have an extra term (because the contribution of component j+]

does not subtract out) and will be as follows:

‘[AI-II(TJ.-)] s, : [mgrmy] (6" ]

I-10 - I1-11,= |
m, /m.] LA (Tera v,y - + 0T (R, ) }
{ J+H1° J+ Cj/Jj+1 Jj+]
and
I-111,- o] = _ I-111
[A (Tji} RC'/J‘ = [mB/mj}[A (RB) ]
N M _
I-111 = I-111 %
- . /m.HA (T.. )R AR )]
{ J+1 q | Jj+ Cj+]/dj+1 Jj+]
In the above equations, the center of mass of the external component,
3 must be predetermined. The T., T.,,, and R are
/Y54 R o

functions of the body positions I, II, and III. Combining the above

t5uations, an equation analagous to Equation (4—5) is obtained and is as

f2Vous
R A S PR
P = A . Me/ M. -r= —m———
Cj/Jj i3 j B AI III(RB)
| AI-II(Tj+1) _ AI-II(ﬁb )
R e VAN CE SR S
- Jt17 73+ - _
A (Tj+]) AI III(RJ )
A J+1

A




A similar analysis can be carried out to find the center of mass for
each internal component with more than one external component. The following

equation results:

-1 A (Rp)
- T T B
R 1 ='( -A-] A- [m /m'} ---------
Cj/Jj JJ J B" I Ill(ﬁé)
AI--II 1) _ AI_II(ﬁb )
- 1 P4 P . , +
Z [Mi/ms )41 Ci/ds  Im1o9ite -iee
i external A (T5) -y
to J Ji

The above egquation can actually be considered generally applicable to
any component except the central component if the summations are ignored
for external components (for which there are no 1 external to j ). Assum-
ing ﬁC%/Ji (i=1,...,n-1) have already been determined, the center of mass

of the central component is given by a simple manipulation of Equation (2-7)

for any position:

=t J .n

| | n-1 '
i — T — —_ -— —
Rev - =T 4{m/m )R, =~ § (m[{T.R.,,+R, )] -R
i C/90 n { B "n B . L_l}{ i Ci/Jj Js | J
n

R e

Jn in the above equation can be any conveniently defined fixed point

sn the central component.

Using the equations devé]oped, then, all component centers of mass can

s found,

twgzrent Inertia Tensors

for two different body positions 1 and II, ddentical except‘for

W pesition of one external component j, Equation (2-13) becomes:
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n
I I ., I\ T, ol
g =1 [Ti Liye (T3) Pi]
i=1 i
T LY (P g (@Il
B RV §

i=1

Subtracting these two equations:

. n
I-11,, . _. I 11 ' I T II,, IV, I I
A {zjx/c DT (e,

~ But for all components except J,

I I |
Ty= T ; i=1,....n  (i#3)
pi - P%I c disl,eon o (i#9)

Substituting, the following equation is obtained:

I-11 [ SO 0% S 3 LT, 1 _ Il
o 0g) =Ty Iy (T - Ty Ly (T30 + Py = Py
Equivalently:
I-11 I-11 I IVT 11 II\T
- = i . -
¢TI - e T = Ty g (- T e (D] (4-6)

1 11

In this last equation, IB and IB are obtainable from whole-body

sr1erirental data (see Chapter 6). As can be seen in Equations (2-9) and

‘f=;);.‘Pj 1s‘a function of mj, Tj’ Rcl/J.’ and RJi . The ;ho1ce of

Bt pesitions determines T, and QJ /A The quantity my s obtainable

t2 2¢‘ore from the methods presented 1n Chapter 6. The quantity RC /J is

#itateshle from the method presented in the PT9V10U5 section. Thus Pj can

» Y4 for any positions I and II, and Equation (4-6) becomes a matrix

vietinn in one unknown matrix, Ij?C . However, there is no obvious way to
: J
w1750 [1-6) directly for Ij?C . Hence it becomes necessary to express the
J




27

matrices in terms of elements, carry out the operations, and equate elements.

‘ In this way Equation (4-6) is equivalent to the following system of nine
Tinear equations in nine unknowns-(the elements of Ij?C \E
J
Main Diagonal Elements
| 3 3
I-11 I-11 _ I-11
(I,(p,p))-a P.(p, = [A : :
& p(P p))l (P5(p,p)) 221 ) (T5(a:K)T5(rsn)) | 1550 (is2)

J
where p,q,r e {1,2,3} (p#g#r)

Off Dﬁagona1 Elements

I-11 1 11 3 3
T glgr e Ry () = ) T T (00T NP AL
% where q,r e {1,2,3} , q#r
. Because of the symmetry of the inertia ténsor, the above system can be

riduced to a system_of six equations in six unknowns (the six indepehdent
tieients of IJ}C.)' The off diagonal equations given above actually provide

s2ly three rather than six equations. For example if q=1, r=2, then above

i
'% «3.3%ion becomes:

&

§

. 1411, I-11 3 3 .

; 6 (15(1,2)) -8 (Pj(1,2)) =1 1 [A(Tj(l,k)Tj(Z,z))] Ij/c_(k,z)
P 2=1 k=1 Jj

ﬁ‘, Byt for g=2, r=1:

3 3
[-11 I-11
M (I (2,1 A2,1)) = A(T.(2,k)T.(1,2
D0y = 1L T2 0T 00T e (o)

i N 11 | ‘

% Bt IB R IB R P§, P;I, and IJVC. are symmetric matrices, or:

i : j
. ; J )

o

i

:
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I ' I

II(

Ip (2,1) = 111 (1,2)

B

1 ol
Pi(2,1) = Py(1,2)

IT _ pll
PJ (231) - PJ (192) .

] - |
Tige,(kot) = Tyye (858
Substituting these into the earlier equation for g=2, r=1, reversing

the order of summation, and commuting the multip]icatibns within the summa-
tion:

AI-II

(12 -ar e (1,2)) = 7 ) [AI‘”(T (2,67, (1 g))] I (2.K)
B 124 gt jreiigths jet
. k=1 =1 J

But k and & are dummy variables. Hence the equation above for

%72, r=1 1is seen to be identical to the earlier presented equatfon for

%1, r=2. Similarly, identical equations result for g¢=1, r=3, and for

3°2, r=1. The same is true for the cases }q=2, r=3 .and 'q=3,' r=2.

In this way the original system of nine equations reduces to the follow-
i»3 linear system of six equations in six unknowns (the independent elements

At

f0.):
J/CJ.

¥ain Diagonal Elements

! I-11 =
) (IB(p,p))A (P;(p.p))

k

it t~1 0

I-11 myae

3 3 -
2 [ L lotenrytra]ige (0
k>2
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where p,q,r {1,2,3}, p#q#r q<r

Off Djagonal Elements

I-1T,, I-11 _ I-11
b (1 (g.r))-a KPi(q,r))-—kZ][. (T5(a,k)T;(r, k))J J/Cj(p,p)
3 3
, [-11
# L LT (re)
k>2

Ty (9, 2)T (r,k)) ]Ig/c 2,k)

where q,r ¢ {1,2,3}, q<r

In matrix form this linear system can be written as follows:

1-11 [ . i -1 11
Ia,~ (2,2)

37y

(3,3)
J/CJ

I, (1,2)
J/Cj

IjVC (1,3)

29
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eroents o IJ/Cj

wear o ft turns out that

where
o () -t e a1
o (1 (2,2)) - 81T Ry (2,2)
I A R R (IO
[ ' ‘
J oF (1 (1L2) - AI'”(pju,z))
o (L) - 2T 1,3)
LAHI (15 (2,3)) - "7 (p,(2,3)
and
I-11
Vj =
IT”
'mju,n?) mjn.z)?) mjn,a)?) 20aT,(11)T,(1.2)) 26T, (1,1T,(1,3)) z(njn.z)rju,a)f
A(vj(z,x)z) A(TJ(Z,Z)E) A(TJ(2.3)2) a1 (2)T)(2,2)) 2067217 ((2.3))  2aT(2,2)7(2,3)
A(TJ(B.Y)Z) mju,z)z) A(TJ(3,3)2) AT, (3,07,(3.2) 28T (3,17,(3,3)) z(nJ(a,sz(J.a))'

T2 NT(3,0)) a(Ty(2.2075(3.2)) aT(2,3)7403.3) [ a(Ty(2,2T,(3.1) [ﬂgaangmnq{anﬁmngnmq
oa(TJ(z.l)TJ(a.z)) 4A(TJ(2.1)T3(3.3)) *A(TJ(Z.Z)TJUJ))

AT LNTE) a1 (L2T53.2)) a(T)(1,37,(3,3)) [ugnmgunq[ugnmgwmq{ugumgwmq
sy 0nTE20] LT By

: A(Tj(LI)TJ(Z.l)) A(TJ(I,Z)TJ(Z.Z)) A(TJ(LB)TJ(Z.J)) [A(TJ(I,Z)TJ(Z.I))} LA(TJ(IJ)TJ(Z.]))] LA(TJ(La)TJ(z.z))]
+

A(TJ(I.l)Tj(Z.Z)) A(TJ(I.I)TJ(Z.B)) A(Tj(l.Z)TJ(Z.S!)) )
(4-8)
{irarly, if the 6 x 6 matrix V;’II has an inverse, then the vector
a can be sojved for direct]y in Equation (4-7).

I-11

j is singular for any selection of positions

sty e rigorously proved in Chapter 5). In fact, for every one of numerous

I-11
J
arc all different than position I's.

k",{{mv“ [

¢ exzmples, the rank of V is only 4, even when position II's

«* & third position (III), identical to I and II except for the position
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of component j, 1is introduced, then an equation like (4-7) can be written,

as follows: '

—

I-111 [, ., - E:I-III
J
|
Ij/Cj(Z,Z)
Ij/C.(3f3) ,
o (4-9)
1.~ (1,2)
J/Cj
|
J .
1.~ (2,3)
| e
where V§~III and 'E§_III have the same form as the previously given
equations for V§_;I and Eg-II, respectively.
Combining Equations (4-7) and (4-9):
I-11 " ) 5 1-11
G| |t b
g -1 (2,2) | = | g I-I o
J » j (4-10)
(3,3) .
(1,2)
(1,3)
] (2,3) |
| - yI-11 |
For notational brevity, the 12 x 6 matrix _%-iff shall be denoted
. V""
J

tr the symbhol Qj' Now, if Qj be of rank 6, then so will the 6 x 6 matrix

;;ﬁ. In this case (QEQJ)"] will exist, and Equation (4-10) can be solved

{++2tly for the vector of the elements of ijc“. However it turns out that
» - j
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the rank of Qj is Tess than 6, the actual rank depending on the selection
of positions I, 1II, and III. That the rank of Qj is less than six is
proved in Chapter 5, where it is additionally .proved that no matter how many
positions are incorporated into Equation (4-10), the Qj métrix will still
be of rank less than 6.

For three positions, it is possible to find specific cases for which
the rank of Qj is 5. Thus there is hope for a unique solution if one
additional equation in the elements of ijé. is introduced. An approxi-

mation for the sum of the moments of inertia of component j provides this

equation:

J/C (1,1) + 1, /C (2,2) + Ij'/cj(3’3) = S; | (4-11)

-The constant sj can be approximated using the methods presented in

AR RO L T D s e

irepter 7.

R RIS

. Incorporating Equation (4-11) into (4-10):

[ Ij/Cj(1,1) 5 I-11

SR e i

o
e %
I
—
1
—
—t
—

Ij'/cj(Z,Z) = | b | (4-12)

T

v PRl
[72]

1.~ (3,3)
J/Cj

J/C (1.2)

J/C (1,3)

(2,3)

J/C
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L I-11 T
V.
e
* I"III
I R I
| 111000

» *T % _
Now if Q* is of rank 6, then (Q Q) 1 exists and Equation (4-12)

can be solved for the elements of Ij}c as follows:
i
I—-I\]/C (1,1)
J/C (2,2) g I-1I
S
(3,3) LT T | I-1II
J/C - -1 . * T : (4-13
(Qj Qj) QJ‘ -b-\j ----- ' ( )
S.
J/C (1.2) J :
1jc,(1:2) ,
| J/C (2,3)
An example of body positions I, II, and III for which (4-13)
#telds a unique solution for the elements of Ij'/C follows.
_ . j
Example 3

Let .positions I, II, and III be defined the same as they were for

ierrple 1. For these positions,
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P~

0.36

| -0.36

0.48

)
n
O o o

o O O o

frr which

1.4896

T+ | 0.5104

Q. Q.=
i 0

-0.3456

0

b

. "
0% s, it turns out, of full rank, and thus (Qj Qj) ' exists.

}

o O o o o o

0.36
-0.36
-0.48

0
0
1

1
1.4896
0.5104

0

0
0.3456

-0.36

0.36

-0.48
0
0
-0.36
0.36
0.48
0
0
1

0.5104

0.5104
1.9792
0
0.3456
-0.3456

0.

0.

-0.
0.

0

0

6

2

6
2

-0.96

0.96

0.72

o o o

0.2
0.6

0.3456

2.7616
0

0.3456

0.2
-0.6
0.96

-0.96
0.72

34

0.3456
-0. 3456
0
0

2.7616 |

"Thus

Purtien (4-13) will determine a unique set of values for the elements of

g

~sation (4-13) is not applicable to internal componénts direct1y. An
. similar to that for the center of mass determination of the previous

results in the following equation for the inertia tensor elements of
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internal components:
o 17,10
[ 5 I-11 ]
J/C (2,2) T S S ——
_ (Q* Qf)_]Q* g I-T11
J3t I
SR
[Ij/c.(“)
: J N
; I 11 T
3} (T1 1/C T + P, )(7,])
% A (T1I1/C ;P )(2 2)
- s T TT + P,)(2,3) p
y i external : i 1/C isdi
: toJ | mzeommeemmmeesmeoemeemeeeeee
% A (T1I /C1T + P )(1 1)
® ! I-11T,p . i T |
i A (TII1/C T. + P (2, 3) ;
: \ o (4-14) %
| é‘
4 The above equation is applicable only after the earlier presented
. _
&« w2l have been used to determine RC' and to determine R., and
f J/J i/Ji
¢ 1. for i external to j. Equation (4 14) is actually generally appli-
" ‘
%74 34 any components (the summation is ignored for external components)

flrewn ®

3% of course, the central component.

it central component inertia tensor is obtainable from:

T n-1 T
| = - 1 - -
In/cn g iz](Tin/CiTi #p) =P T (4-15)




- late, vhole-body products of inertia have not been experimentally deter-

Coxhp f

‘tis last equation was obtained by simple manipulation of Equation (2-13).
The Tast two sections, then, have provided a means for fihding the

weter of mass location and inertia tensor for each body component about

unponent-fixed axes. A computer program capable of using this means

[35LGPAM PART) ds provided in Appéndix B. Once the component properties

wt found, Equations (2-7) and (2-13) can be used to predict whole-body mass

sezrarties for any body position of a particular subject.

i:2seirental Determination of Whole-Body Mass Properties

At the beginning of this chapter, it was éeén that experimental data for
#:%¢-body mass properties for selected positions was needed in order to apply
e nethod developed by this chapter for prediction of component mass prop- .

R

#°t¢;, This section briefly describes how this wh01e~body mass property
&% vight be obtained.

¥nile several researchers have experimentally determined centers of
keatve for 1fving subjects, only one determination of whole-body center of

yat'ty end moments of inertia has been made (Santschi, DuBois, and Omoto). :

e a e

Husever, Fowler provides a means for carrying out such a determination.
Santschi, DuBois, and Omoto (Ref. 15) experimentally determined centers
# teyatty and moments of inertié about three axes for 66 living subjects in
snoitions.  This was done by findihg oscillation frequencies of a
Aot perdulum suspended alternately from two parallel axes.'bMean values
s faed deviations were determined for the subjects studied. Results
| o+ tat useful predictions of moments of inertia for similar subjects

%y rade from height and weight alone.

‘4 theoretical accuracy of the pendulum used was about 0.5 percent
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for the center of gravity and between 2 and . percent for the moments of
fnertia. The 1éngth of the pendulum was long and the pendulum oscillations
s=all (1°) to minimize the effect of shifting body fiuids.

Fowler (Ref. 9) deve]opéd a theoretical method for experimenta11y

42termining spacecraft mass distribution while in space. By using a series
g sp

tf three thrusting maneuvers, the center of mass and inertia tensor of the

treft can be determined, assuming the spacecraft mass s predetermined from

¢ linear acceleration and that angular rates can be measured. This method

'zapp]icabTe to a human subject. If the experiment is done on earth, then
1w torques can replace the known thrusts. Though there is currently no
vice available with which to spin a human about three perpendicular axes'
wich Fowler's method requires), one can be developed.

In order to minimize the effect of redistribution of body fluids,
walar rates should be kept as small as is accurately measurable.

If it is desired to include outer coverings in the values for mass
ficties, then the subject needs only to wear said coverings during the

=ae-irental tests (for either of the above described methods).

o teration of Quter Garments or Suit

for some application, e.g. a maneuvering’astronaut, the subject may
#eut at outer covering that moves with the body parts. The contribution of

v pter covering to the system mass properties may not be negligible.

Jaoxaeiribution of  these outer garments or suit can be accounted for by using

<% wrations already developed if we consider the outer covering of component

No changes occur in the equations already given except
ind sj will include both the body part and outer covering contri-

it is shown in Chapters 6 and 7 how mj and sj estimates

P
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=zluding the outer covering can be made. This method will be valid if the
. J Nowing two assumptions are made:
(1) The components of the outer covering corresponding to thé
body componenfs are themselves rigid bodies. |

(2) There is negligible relative motion between each component

and its outer covering.

The basis for the solution for component mass properties is the forma-
+:r of what will be called mass property difference equations. These are
tiwcd by subtracting the equations for whole-body mass properties (Equations
27y and (2-13)) for selected body positions. Using the center of mass

¢*ference equation and estimates for component masses, component centers

r*eins can be determined. Using the inertia tensor difference equation, ﬁ;
wtinates for component masses, and estimates for sums of éomponent moments

¥ itrrtia, component inertia tensors can be determined. It will be shown

W ftapter 5 that estimates for sums of component moments of inertia provide

+ 13704 additional independent equation relating elements of component

w112 1ensors.,

e, pr—— e




CHAPTER 5 |
. ' Explanation of Infinity of Solutions

for Component Inertia Tensors

ST T e .

“In Chapter 4 it was claimed that the component inertia tensor could

H
;
¢
gt
a

%% be uniquely determined without the introduction of an additional equation

selating the elements of the inertia tensor (the sum of component moments of

‘isrtia). The purpose of this chapter is to prove this claim.

Equation (4-8) can be expanded to include any number of positions as

ta lows
5 AR O 055 S B O S I D T [ FI-11 ]
¢ '3 I 7¢ ]
‘»‘ """"" ) (252) A B
¢ 1-111 | AI-ID0
Y (3,3) b
(1,2) . (5-1)
(1,3) :
I-N (2,3) | R
Vi L 23) ] .
L J R L bJ J
—
= Qj

e N is the number of body positions.
in Chapter 4 it was claimed that the inclusion of any number of body
oostzngs will not provide a Q}Qj of full rank, and thus (5-1) cannot be
i-wtls solved for the elements of Ij?C. for N positions selected. The
rpne oF this chapter is to prove this g]aim, which is equivalent to
i tmat there exists an infinity of so]utioné for the elements of'

1.
C.
J/ i
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ta (5-1). Note that (5-1) is based solely on whole-body mass properties for
. . stlected positions and estimates for component masses. ’
The method of proof will be to show that for ahy‘positions I and II

I-11

fanly j different), Vj has the same linear dependence of columns, i.e.

2 sum of the first three columns is zero. Once this is shown,'fhen it is

TR T L R T ge gt cbRT

1t:{ly seen that Qj in (5-1) will have this linear dependence since each
1! the submatrices must.

Consider any orthogonal transformation T, which for this work is
¢ 313, By the definition of orthogonal, TT = T_], and consequently

' = 1. Writing this out in terms of elements and performing the matrix

1

a

‘tiplication:

W
o

[T, 1(1,2) T(1,3)] [T(L,1) T(2.1) T(3.1)] [0 o el
= 17(2,1) T(2,2) T(2,3)] |T(1.2) T(2,2) T(3.2)

010
T(3,1) T(3,2) T7(3,3)] (T(1,3) T(2,3) T(3,3) 0 0 1

lently
‘1) TONTE) ) TTE ]
H472(1,2) T(1L,2)T(2,2)]  1+7(1,2)7(3.2).
7%(1,3)) HT(1,3)T(2,3))  [+7(1,3)7(3,3),
TNTOL) ) (TP2,1) T(2,1)7(3,1) ) 110 of
T(2,2)7(1,2) +T2(2,2) +T(2,2)T(3,2)[ | = |0 1 0
141(2,3)1(1,3))  |+72(2,3) +7(2,3)T(3,3)] 0 0 1
3,07, ) (T(3,1)7(2,1) fT2(3s1)
M3,2)70,2)  [+13,2)7(2,2)|  |+7%(3,2)
STLTL3)) T3,3)T(2,3)) |+1%(3,3) ]

*.# for any positions I and 1II:
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40,2200 ,3)2 - T, 021, 2) 201 (g, 3)2
2121 2,2)%71 (2,3)2 2,12 (2,2)%71(2,3)2
m1(3,1%71(3,2)%71(3,3)2 - 13,1271 (3,2)%71(3,3)2

1}
n

it

2,1, 2)71(3,2)+TI(2,3)TI(3,3)
= ™0, nale,2) 1 5,001 (2,3)711(3,3)

ot a2t 24 (0,371 (5.9)

II(1,1)T”(3,1)+TH(1,2)’T”(3,2)+T”(1,3)T”(3,3)

Tt ena oLt 2,20 (1,3 2, 3)
Nt e, naa, 2 2,40 37 Hio.3) =

- But manipulating the above equations, and then substituting the

Wtf‘“xen

L o

I-11

ts of V (referring to Equation (4-8):

¢
(e

v¥'11(1,1)+v¥'11(1,2)+v§‘II(1,3) -

vj M, 1)+v (2,2)+v§‘11(2,3) = 0
v§ s, 1)+v (3,2)+V¥‘II(3,3) = 0
I iy, 1)+vI Mg, 2)+vI Hg,3) = 0
y§ s, DA II(5,2)+v1."”(5,3) = 0
g 1)+vI Mg 2)+vI Mg 3y -

J

1t can be seen from these equatuons that the sum of the first three

5 of vI -1 is zero. Thus Vé -11 is of rank less than 6 for any

. vI~II vI-III VI-N

=0

=0

- 0

2unst 1 oand 11, The choices of positions I and II are arbitrary;

i Y eV will all have this same Tinear depen-
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I
J
toce of columns. Clearly, then, Qj = ; will be of rank Tess than
I
J

4 vince the sum of its first three rows 1s zero, and thus it cannot have six
“i~early independent columns. Hence, for any number of positions, (5-1) will

t:t yield a unique solution for the elements of In order to obtain

I\ .
J/e;
+urique value, then, it is necessary to introduce an additional equation.
i+ asproximation of the sum of the component moments of inertia can provide

«e3her independent equation, which together with a Qj matrix formed from

airtcious selection of three body positions determine a unique value for the

Crents of T, (as was shown in Example 3).
J/cj




CHAPTER 6
Suggested Methods for Estimation
of Component Masses
The determinations of the component centers of mass and inertia tensors
‘epended on estimates for the masses of the componehts; The purpose of this
thapter is to provide two possible methods for making this estimate. These
tre regression equations and water immersion (with an assumed gensity). Both
n:thods depend on statistical data for cadavers.

Inclusion of outer garments
2~ suits is also considered.

Liression Equations vﬁg;

M
w

Tt on B

e,

Estimates for component masses can be obtained from regression equations

redicting component weights from total body weight.

J. T. Barter (Ref. 1) used the frozen cadaver data of earlier research-
r3 to devise a system of regression equations estimating the component

wihts. These equations are as follows, where all weights are in 1bf.

' N, page 171):

43
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% . Standard Deviation

Body Segment Regression Equation ' of the Residuals
¢ Head, neck and trunk = 0.47 x Total body wt. + 5.4 (+2.9)
{  Total upper extremities = 0.13 x Total body wt. - 1.4 (£1.0)
© Both upper arms = 0.08 x Total body wt. - 1.3 (£0.5)
é; Forearms plus hands® = 0.06 x Total body wt. - 0.6 (x0.5)
%. Both forearms® | = 0.04 x Total body wt. - 0.2 (+0.5)
[ Both hands = 0.01 x Total body wt. + 0.3 (20.2)
. Total Tower extremities = 0.31 x Total body wt. + 1.2 (+2.2)
% Both upper legs = 0.18 x Total body wt. + 1.5 (£1.6)
¢ Both lower legs plus feet = 0.13 x Total body wt. - 0.2 (£0.9)
. toth Jower legs = 0.11 x Total body wt. - 0.9 (x0.7)
£ Both feet = 0.02 x Total body wt. + 0.7 (20.3)

-y T ST

"% =11, all others N = 12.

‘The sum of the predicted weights of the above equations does not always

i t3ual the total bédy weight. To compensate for this, the différence is

5 tlculated, then distributed proportionally among the segments.

v Another set of regression equations, also based on frozen cadaver data,
w15 developed by Clauser and McConville (Ref. 4). They are as follows,

shere a1l weights are in 1bf:

Head Weight .028 Body Weight (W) + 6.354

Trunk Weight = 552 W - 6.417
Upper Arms MWeight = .059 W + .862

Forearms Weight = 026 W+ .85
Hands Weight = .009 W + .53

Upper Legs Weight = 239 W - 4.844
Lower Legs Weight = .067 W + 2.846
Feet He1ght = .016 W + 1.826




1
i
i
y
|
%
§
i
3

45

As for Barter's equations, the predicted weights are corrected so that
the difference between total body weight and the sum of predicted weights is

distributed proportionally among the segments. Note that Clauser and

McConville's equations provide an estimate for head weight not given by
Barter's.

It is claimed that this second set of regression equations results in

‘2 substantial redistribution of weight. Which of the two sets of regression

equations is more accurate is as yet an unanswered question.

Hater TImmersion

By having the subject in question alternately immerse his body parts

into water tanks, the volumes of components can be measured. Internal compon-

ents' volumes can be found by immersing each internal component with the

corponent(s) external to it, then subtracting the already determined volume(s)

sf the external component(s). The volume of the central component can be

found by immersing the entire subject to find his/her whole-body volume,

t*n subtracting the already determined vo]umés for the other body components.
Using statistical data for specific gravity of cadaver parts (Ref. 6,

330 1955a), approximate values for component masses can be found from

4merﬁmnta]1y determined vo]ume§ by assuming that the subject's components'

wesific gravities are reasonably close to the cadaver data.
Bris s

However, this .

rot account for individual variations in body structure. Thus if one

R S
<:~lz<‘»‘l‘.,

t has larger than average bones then his component specific gravity

LU P

RN

erpected to differ from the average data for specific gravity.

'» method of water immersion may be qualified, in that component

!
IR
’ .

~2y be changed by water pressures encountered. This effect, if

weegitatle) can be minimized by immersing the components as much as possible




-
[

e | _ i
é ~ near the surface of the tank (more horizontal than vertical). One possibie
% way to avoid such a deformation effect would be to use rigid casts of the
. 1 subject's body parts for the immersion tests.
% This water immersion technique, though more difficult and costly tﬁan
| % using regression equations, has the advantage that it better accounté for
% individual differences in mass distribution.
% - Inclusion of Outer Garments or Suits in Component Masses
é Each component mass can be considered to include the mass of the outer
'g covering surrounding the component (see Chapter 4). The contribution to the
% component masses by the outervcovering parts can be found by simply cutting
% the outer covering into appropriate sections and weighing. These values are
% then simply added to the corresponding @omponent masses.
% If destroying a garment or suit by cutting it into sections is econom-
‘l’ % fcally undesirable or impossible, then the researcher must devise his own
g rethod for obtaining reasonable values for the masses of the outer covering
%7 ¢s-ponents. |
¢%; Tieber and Lindemuth provide a set of regression equations for estimat-
%; t*5 the component masses for a typical pressure suit (Ref. 17, page 28).
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CHAPTER 7

Suggested Methods. for Estimation of
The Sums of Component Moments of Inertia

The determination of the component inertia tensors depended on estimates

for the sums of component moments of inertia (see Chapters 4 and 5). The

purpose of this chapter is to provide two possible methods for making‘this

estimate. Methods for inclusion of outer garments or suit shall also be

_presented.

Hanavan Model

The first method is to obtain vatues for s. (j = 1,...,n) by using

Hanavan's simply shaped components to obtain estimates for I.! (3 =1,

j/cj ceashl)
(see Chapter 3) then finding s from its defining equation:
% (k, k) ( )
S, = I.' k, k J=1,..05n
J 7 e ) /cj |

This is not equivalent to assuming simple geometric shapes for the

body components, rather it is assuming that the sums of moments given by

Hanavan's model will not differ significantly from the actual values for the
SUTS.

Hanavan's estimates for IJ.'/C (3 =1,...,n) will, as was indicated

. J |

ir Chapter 3, depend upon measurements of the subject's dimensions and
tatimates for component masses. The researcher can use either of the methods

sresented in Chapter 6 to obtain component mass estimates.

47
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Casts df the Subject's Components

I SRS

Molded casts of the particular subject's components made of a uniform
density material provide the second method for estimating the sj (3 =1,...5n)
If experimental tests are performed on these casts identical in nature to

the method for whole-body tests discussed in Chapter 4, then estimates for

i I.! (3 = 1,...,n), and thus for s, (j =1,...,n) can be obtained.
J /cj J ‘
It is not necessary that the uniform density material used to make the

casts have the same specific gravity as the data for body componehts. This

is true because, for example:

TR RN T TR

Ly = [ (y2 + zz)dm‘= J (y2 + 22) odv = o J (y2 + zz)dv
m v v

S TUL A i

for the casts. Thus the ratio of specific gravities can-be used as a scaling

e

S S

factor to obtain estimates for Ij /c. (j =1,...,n) for the subject.
J

e

It is worth nothing that the orientation of the axes about which the

spin tests are made is not critical és long as the three axes are mutually

perpendicular.  This is because the inertia tensor transforms by a similarity

L g AR

transformation. It can be easily proved that for an orthogonal similarity

transformation, the sum of the main diagonal elements is invariant under

Siart

iny transformation.

.k
T,
LE)

W

i
B

irclusion of Outer Garments or Suits in s.

L

There are two methods for the inclusion of outer garments or suits in

- W values for sj (3 =1,...,n).

The first is to use the Tieber-Lindemuth model for each suit part
nmresponsing to a body component (see Chapter 3). This methed can e wied

0 fird the inertia tensor for each suit part, which is then stugdy 28% 2

% ote inertia tensor for the corresponding body cirjerent {ehtalaed $ii0er
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by using Hanavan's model or cast experimental data).

The second method involves actually cutting up the garment or suit into
segments corresponding to the body parté and performing experimental tests to
obtain inertia tensors. This can be done separate]y and adding in or actually
surroundfng the éorresponding cast to obtain Ij'/Cj (j =1,...,n) for the
combined body component and suit segment. For flexible outer coverings. such
test data may be of questionable validity. For a pressure suit, it may be
possible to inflate each component to sufficient pressure to fender it

sufficiently rigid to solve the problem of flexibility. This would involve

somehow sealing off the ends of the section of pressure suit, however.

Conclusion

This chapter has presented two possible methods for obtaining reasonable
estimates for the sums of component moments of inertia (with or without
outer coverings or suits). Both methods presented depended on statistical
data for cadavers (Hanavan's model on the component mass estimates; the com-
ponent cast method on the specific gravity data).

Hanavan's model is clearly the easiest and least expensive, as the only
experimental data needed is the total body mass and the various ahthropometric
¢:ta. But the component cast method, while more costly and more difficu]i
t carry out, offers the advantage of actually taking the possible variations

from statistical average of component shapes into account.




L CHAPTER 8

i Limitations

? There are four types of limitations on the method for predicting mass
; properties presented in Chapter 4. These are errors introduced by invalidity
% in assumptions, errors in whole-body experimental data, accumulated errors

i in the mass property predictions for thevcentra1 component, and joint con-

2 straints preventing exact app]ication‘of the method. The remainder of this
% chapter discusses these and presents recommendations for further study where
% appropriate. Finally, suggestions for futureAsensitivity analyses are made.
%

;

% Invalidity of Assumptions

~§ There is some questioh as to the validity of each of the assumptions

% mide in the development of the present study's method for determination of

E component mass properties.

% As was indicated in Chapter 1, the rigid body assumption is of marginal
%‘ validity for the torso because of the flexibility of the backbone. Hanavan's
é% zode] partially models this by dividing the térso into two halves. Theoret-
‘% ically, nothing precludes such a division of the central component for this

ék study's method. It remains for future researchers to determine the validity
>§ 5f such a representation of the central component. For a pressure-suited

tstronaut, mobility is restricted sufficiently that the torso may prove to

ot adequately modeled by only one component.

The hands and feet are also flexible, thus also compromising the rigid

!y assumption. But these body parts are of sufficicntly srall mass Shat

3)
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the variation in contributions to the mass properties due to flexibility
may be negligible. This is even more likely for a pressure-suited. astronaut

with reduced 1imb mobility. This also remains for future researchers to

determine.

The assumption that there exist valid methods for estimating compbnent

masses depends on there being little significant difference between component

masses of a live subject and a frozen cadaver. This is the case only if

component properties are approximately the same before and after death and

if individual variations are not too great. Some indication of the validity

of the estimation methods would be given by comparing results after applica-
tion of both methods. A]éo, because the total number in the sample of ca-
daver data is, to date, relatively Smal], there is a need for more such data
to increase the validity of the regression equations‘and specifié gravity
data. Further, as was indicated in Chapter 6, the effect of individual
variations in body structure and of water pressure on component volumes in
water immersion experiments must be considered and investigated.

Next, the validity of methods of obtaining sums of component moments

¢f inertia is considered. Both methods presehted {the Hanavan model and

a5t data) require estimated values for component masses which may themselves

22 in error. Also both methods use uniform density components, which actual

tran components are not. That there is negligible difference is another

shject for future study.

Finally, the assumption that the components of the outer covering are
flexible and that there is negligible relative motion between each of the

'y temponents and the corresponding outer covering component introduce

é
(i ;

I
G
v
:

t-5'i5ible error should also be experimentally investigated.
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Errors in Whole-Body Experimental Data

Errors in whole-body experimental data arise from shifting body fluids,
experimenta] measurement errors (in oscillation frequencies or angular rates
and torques), movement by the.subject, and the environment of ‘the experi-
ments.

The error due to shifting body fluids can be minimized,. as was indicated
in Chaﬁter 4, by small oscillation amplitudes and Tong pendulum length (for
the complex pendulum) and by small angular rates (for Fowler's method).
Future work would involve improvement of the complex pendulum accufacy and
development of a device capable of physically realizing Fowler's method.

Inadvertent movements by the subject can be mjnimized by carefu]ldesign
of the apparatus used. Some movement is unavoidab1e;‘however, specifically
~internal movement of blood and expansfon and contraction of the lungs. The
influence of these must also be investigated in the future.

The environment of the whole-body experiments may also be of some im-
portance. Probably mosf significant in this respect is the effect of‘gravity.
If the experiments. are carried out in the presence of appreciéb]e gravity
(they must be for the complex pendulum), then the gravitational force w111
tend to settle the body fluids toward the 1owér portion of the body. ‘Thus
an astronaut under weightless conditions may have én appreciably different
mass distribution than on earth. This effect may be negligible, but should
be investigated. One avenue of study would be‘to perform the experiments

with the subject both upside down and right side up and compare the fesuTting

data for mass properties.

recumulated Errors in Central Component

As was indicated in Chapter 4, the central component mass properties



can be determined only after the mass properties of all other components
have been found. Thus any errors made in the determination of the component
mass properties will accumulate in finding the mass properties for the
central component. There is, of course, the possfbi]ity that errors in the

component mass properties will cancel out, but this cannot be assumed.

Joint Constraints

The bending of certain bbdy joints is constrained so as to preclude
the orientation of the extérna] components in three'positions not.in one
'p1ane (this was suspected in Chapter 4 as necessary to uniquely determine
the component mass properties).  The elbows and knees (hinge joints) are
joints of this type. |

For the joints immediately external to these joihté, then, a researcher
can only obtain appreximate values by slightly rotating the components in-
ternal to the hinge joint for one of thé selected positions so as to allow
the external component to get out of the plane of the other positions.
Becaﬁse both the thighs and upper arms appear fairly symmetrié, this seems a
reasonable so]utfon to the problem of joint constraints. Experimental data
on cadaver thighs and upper arms can serve as a more quantitative measure of

this symmmetry.

Sgggestéd Sensitivity Analyses

Sensitivity analyses on the effect of}the possible sources of error
presented in this chapter should be carried out in the future so as to
determine accuracy requirements for reasonable predicted results. These
would consist of alternately determihing the relationship between input

errors in component masses, sums of component moments, and whole-body data
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and the resulting differences in predictions output. Of secondary importance,

' though, is the differences in predicted mass propertires; more important are

the differenc‘es in predicted dynamics of the system of interest.




CHAPTER 9

Conclusion

In this'study a method has been presented.fof predicting the component
mass properties for a human about .component-fixed axes, with or without
outer coverings. This prediction depended on a component rigid body assump-
tion, estimates of component masses and sums of component moments of inertia,
ahd data for whole-body mass properties for selected, known positions. . If
an outer covering was to be included, then the prediction additionally
depended on the assumptions that negligible error was introduced by consider-
ing the covering components rigid and relative movement between body and
covering components negligible.

The researcher is free to choose the number and definitions of the

body components. Thus if it turns out that significant error does not re-

sult, the hands might be considered part of the forearm, the feet part of

the calves, or the head and neck part of the trunk. It remains for future
researchers to investigate the vaTidity of different component definitions.

| Limifations of the results including several possible sources of
error were discussed in the previous chapter. Some of these error sourées
are not easily isolated nor the degree of error easily ascertained. However,
the best indication of the validity of the method presented in this study
is not the accuracy of the predicted mass properties, but the degree of
agreement between predicted and actual dynamics of the system of interest.

In summary of the method presented in fhis study, a'f1ow chart is

provided in Figure 4 indicating the sequence of steps taken in actually

55




carrying out a prediction of the mass properties for a component. Dotted
Tines indicated optioné] steps. Once component mass properties have been
determined, whole-body mass properties can be predictéd for any position

by using Equations (2-7) and (2-13).
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Determine
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APPENDIX A
PROGRAM WHOLE (FORTRAN IV)

The purpose of PROGRAM WHOLE is to calculate who]e—body mass properties
from component mass properties about component-fixed axes. An explanation of

the symbols used in the program follows:

Computer Symbol Study Symbol and/or Explanation

A The Point A.

FCTR Cbnversion Factor from Degrees to Radiahs.‘
G _ The Angle v

IBA(3,3) The Matrix IB/A .

ICA(3,3) The Matrix‘Ii/A .

1cC(3,3) The Matrix I{/Ci .

ICCP(3,3) The Matrix_Ii'/Ci .

MB v The Scalar mg .

MI | | The Scalar m. .

P(3,3) , The Matrix Pi .

PI K

PRMAT A Matrix-Printing Subroutine.
RBA(3) The Vector EE/A .

RCA(3) The Vector ﬁbi/A .

RCJ(3) . | The Vector ﬁéi/di .

RCJP(3) The Vector ﬁbi'/di .

RJA(3) _ The Vector ﬁdi .

7(3,3) The Matrix T, .

TICCP(3,3) 4 ‘ The Matrix T. Times Iil/C

.i
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U ‘ The Angle u.
X ~ The Angle x.

The foilowing are external subroutines (1isting is not prbvided for

brevity):

| External Subroutiﬁe Purpose‘
MSAB - Matrix Multiplication (AB).
MSABT }‘ Matrix Multiplication (ABT).
MATADD Matrix Addition.

MSNULL Sets all the Elements of a Matrix to zero.

A Tisting of PROGRAM WHOLE follows.




PRNAGRAM WHOLF (TMPIIY, OUTPUT)

%*ﬁﬂv{&*#ﬂ{‘ﬂ‘r%%4?%%%##&#%?%}{}4##&%-{}*%Q%#%%Gﬁ{}%%%#%#-;}%%ﬁ*%*&#**%*%

- : %
# THTS PROGRAM CALCULATES THE FOLLOWING ’ 4
(4} 3
t 1) COMPANENT ANN WHOILF=RONY CENTFR OF MASS #
o LOCATTONS REI'ATIVF TO ARRTITRARY POINT A, %
3 - L @
# ?2)  COMPANENT AND WHOLF=RODY INFRTTA MATRICES =
# ABNUT THF AXFS SYSTEM AT A, #
# )
* : UNTTS  ew- 4
o 3
% “A LOCATYON -——— &
4% &
# RONY POSITINM wea _ v #

%%&u%*&*%*u*n%u*%&&&a%*é&v***G&&*&%*&%4%&%*#*%*******%**&*%

DIMENSTON RCJP () RrJ(3)y RCA(3)s RJUA()y RBA(3),

2 T(343)Ye P(Ry3Ys TICAP(3,3)

REAL MTs MBy T00P(397)e TCC(393), TCA(3,3)y IBA{343)

PYT = 341415924653%RQ70

FCTR = PI/1R0.

READ 200s MRy N

CALL MSNULL (RRA, 7y le¢ 3)

CALL MSNULL (TR8As 3, 3, 3)

PRINT 107
102 FORMAT (1HY)Y -

NO 1 1T = 14 N

READ 203, M7

pF'\n 7019 XQ Gq U

PRIMT 1004 X, s U :

X = X«FCTR 3 G = G#FCTR 3 U = U#FCTR

100 FORMAT (S5Xy IF10.6)
SINYX = STN(X) % £NSY = CoS(X)
STNG = SIN(G) % C0Sh = CNS(G)
STNU = SIN(L) ] cnS! = CoS ()

T(1e1) = COSX#rNSG

T(14?2) = COSX#QTMG#STINII =« STNX#COSU
T(Y43) = COSX&aTHGHANSH + STNXESTNU
T(?241) = SINX#rNGG

T(?42) = STMNXEQTMGHSTNIL & CNSX#CASU
T(243) = SINX#QTNG#CNSII « COASX#STNU
T(2)1) = =SING

T(3e¢?) = rOSGecTNU

T(Re3) = COSGarOSy

READ 2024 RCUP
RFEAD 2024 RJA
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200
201
202
203

Ty R R R Y LT A A TR R R R R

CA1lL MSAB (T, 7. 3, QC 1Py 34 Ye RCJe 34 3y 3)
CALL MATAND (RAJe RJAs RCAs A9 1y 3¢ 30 3)

DO 2 K = 1, R :
RRA(K) = RRA(KY) + RCA(K)#(MT/MB)

COMTINUF '

N 3 K = 1y 2

REAN 202, (TCCP(KeLYy L=1,43)

CONT TNUE

CALL MSAR (Ty 2¢ 3¢ TCCPy 3¢ 3¢ TICCPy 79 3y 3)
CALL MSABT (TIcCPs 3¢ 29 Te 39 3, ICCs 39 3, 3)

P(lel) = M] # (RCA(PYHRCA(Z) + RCA(ZIH#ReA(3))
P(242) = MI & (RCA(IVYHRCAL()) + RCA(3)I#RCA(3))
P(3s3) = M1 & (RCA(1YH¥RCA()) + RCA(2)#RCA(2))
P{1+42) = MI & (RPA(IYHRRCA(2)) ‘

P13 = MT & (RCA(IYHRCA(I))

P(243) = MI & (RCA(PY¥RCA(3))

P(241) = P(1¢2)

P(3¢1) = P14

P(r,2) = P(ry3y

CALL MATAnD (ICCQ D, ICA, 39 3,-3’ T 3)
CALL MATADD (IrAs ICAs IRAs 339 34, 39 3y 3)
CONTINLIE

CAl L PRMAT (RRAs 3. 1)

CAIL, PRMAT (IRA. 3, )

FORMAT (F104he TIO)

FORMAT (3F)0,2)

FORMAT (3F2n,/)

FORMAT (F1N,86)

END

SURROUTINF PRMAT (ATRIXs Kol

# THIS QUBROUTINF PnTnTe aNY K RBRY L MATRIX,
[ R R RN R R R R AR R R RV R IR R R R R R R B R R TR R R R R R R R LR R R AR R AR g )

NIMFNSTON ATRIY (K.l

PRINT 101

0O 1 M = Y,K

PRIMNT 100e¢ (ATODTXY(MgN) g N = J9L)
CONTINUE ‘

n FOPMAT ()X, AF2Ne12)

FORMAT (1/+ 1X. 71(1H%))
RETURN % END

#

bl




APPENDIX B

PROGRAM PART (FORTRAN IV)

The purpose of PROGRAM PART is to ca]cufate the masé properties for
any body component (except the central component) from whole-body mass property
data for three selected positions, an estimate of the component mass, and an
estimate of the sum of the component moments of inertia. An explanation of
important symbols different from or in addition to those symbols of PROGRAM
WHOLE (Appendix A) follows:

Computer Symbol Study Symbol and/or explanation
A(6,3) ~ The Matrix Aj
ATA(3,3) | The Matrix AJ.TAJ.
, , . T, )1, T
ATAAT(3,6) The Matrix Aj Aj Aj
BBI(6) A Dummy Vector Needed by Subroutine
' MATINV.
BBR(3) A Dummy Vector Néeded by Subroutine
| MATINV. ‘
’ [ = I-11 ]
BI(13) The Vector ?j;;___
— I-I11
S
NI
v | [ 1-11
BR(6) The Vector A (RB)
| IR
A Ry)
L. ( B
DETER ' The Determinant of the Matrix

Inverted by MATINV.
€2




The Prefix E

£(6) (=E1+E2)
FO(6,3)

E1(6) (=(EO)(ERCIP)
E2(6)

CEI(13)

MC

The Suffix N

NE

Q(13,6)
| QTQ(6,6)
QTQQT
SC

V12(6,6)

V13(6,6)

63

The Computer Symbol Prefixed is for
a Component External to the Component
Whose Mass Properties are Sought.

A Vector Used for‘Notational Brevity.
A Matri# Used for Notational Brevity.
A Vector Used for Notational Brevity.
A Vector Used fof Notationé] Brevity-
A Vector Used for Notatfdna] Brevity;
m,

J

The Symbol Suffixed if for Body
Position N. '

The Number of Componénts External

- to the Component Whose Mass Properties

Being Sought.

*

9

*T * *T * _]
@ To*y 1o

Q; Qj) Q;



The following are additional external subroutines (1isting is not

provided for brevity):

External Subroutine

MATINV

MSATB

VSUBC

Purpose

Matrix Inversion
Matrix Multiplication (A'B)

Vector Subtraction.

64
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’ PROGRAM PART {TNPUT, OUTPUT)
Q&n%#&#&*%0%%#%&&#ﬂ&&%%*%#ﬂ#**%%#%%#&#&ﬁ%%*ﬁ##*%*%*%*#*%%#*
L 3
# THTS PROGRAM NETERMTIMES THF MASS PROPERTIES FOR #
B ANY COMPONENT nF THF BNADY EXCEPT FOR THF CENTRAL 3
@ COMPONFNT (TYPTrAlLLY THE TORSO) . &
4 ' : i

LR R F R R R R R R R R R R TR R - R TR R R R R R R LR TR R TR R )

DIMENSTON A(heaYe ATA(93)s ATAAT(346)y BRI(K)s RRR(3),
RT(13) s RRI(AY, F(AYs FO(ReD) s E1(A)y ED(AYy EI(13),
FINCP(343) s FD(34392) s FRCIP(3)y FRJIA(Is ) s ET(394343)
ETTTN(343) s ETTTT (3430, FTN(343)y IRA(30343),
IRCP(393)y TNNFR(1s2) s INDFT(642)y IPIVR(K) s IPIVII(AR),
P(343e3)y N(146)e NTD(A4B) s QTAOT(6613)y RI(3),
RRA(3¢3)y RCUD() e DJA(3)y SUMR(6) s SUMI(12)s T{39343),
VI2(696) s VI3(AHYs VOTRT (R) '

REAT MRy MCy MF, TRA. TCCP

PT = 3.14159726513589749

FCTR = PI/1R0,

PRINT 204

READ 200, MR, NF

READ 203, MC
DO 1 N = 14 3
‘. READ 2014 Xo Gy U
PRINT 2014 X4 e U ‘
X = X#FCTR 3 G = G#FCTR % U = U#FCTR
1 CAILLL FORMT (Ty No X4 Gy U
o 2 K 1y 3
Co ? L 14 3
A(Kal) 2 T(VeKyb) = T(24Kel)
2 A(K+39L) = T(V1eKoL) = T(3I4Kel) :
CALL MSATR (Ay Ay 2y As Ky ¥y ATAY Ay A, 1)
CALLL MATINY (ATA.3.HDP~090ETEP-IDIVDaINnE0039ISCAQ)
CAlLLL MSABT (ATAy 3¢ 9 Ay 64 39 ATAAT, 3y b4 3)
BN 3 N = 1s 3
READ 2nN24 R
0N I K = Y, 1
2 RRA(NWK) = R(K)
PO B K = 1, 2 :
RRIK) = (MR/MEY # (RRA{Y k) = RRA{Z24K))
& BRIK+N=(MR/MCY # (RRA(T4K) = REBA(34K))
IF (NFLEQ.0) 6n TO 17
PO 12 1 = 14 NF
READ 2034 MF
CO 6 K = 146
A SHMR(K)Y = 0.0
DO 7 N = 1,17
READ 201, EXy £G, FI

D NN PN

I
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’ EX = FX#FCTR S EG = FG#FCIR $ FU) = FU¥FCTR
7 CALL FORMTY (FT, Ny EXs FGy FU)
0O 8 K = 1y 3
NO R | = 14 3 :
FA(Ksl) = (ME/MC)Y % (FT(1eKel) = FT(20Kko))

R EN(K+3sL)= (MFE/MG) & (FT(lakel) = ET(39Ksl))
RFAD 2024 FRCJP '
CAll, MSAB (F0y Ae 3o ERCIUPs 39 1y Els 64 39 3)
No 9 N = Y,y 3 .

CREAD 2n2,4 R
£ND 9 K = 14 3
qa ERJA{(NGK) = R{K)

0O 11 K = 1« 3
E2tX) = (ME/MC) #(EPJA(1eK) =FRJUA(24K))
11 E2(K+3) =

(MF /MY #(ERJA(LeK) =FRJA(34K))
CALL VADDC (El, F2, Fy A) .
CALL. VADDC (SUMR, Fe SHMR, A)

DO?lK:lqlq
21 SUMIU(K) = n,.0
DD 18 K = 14 3
READ 202+ R
DO 18 L = 14 3
12 ETCCP(KyLY = R(L)
DN 20 N = 14 3
: DO 19 K = 1,4 3
"; DO 19 L = 1,y 3
, 19 ETM(KWL) = FT(NsKel)

CAl L. MSAR (FETM, 34 3, FICCPs 30 3¢ FTTls 3, 3, 3
CALL MSABT (FTTe 3¢ 9 ETNy 9 34 ETITN, 3¢ 39 3)
0N P23 K = 1, 3
DO 23 L = 14 3
22 ETTTT(NsKeL) = FTITNIK,L)
20 CALL PAXTH (EP, My FTs ME, FRCJP, ERJA)
CO 22 K = 1, 3
KP = 4K
CALL PQR(KPs Kne KRr) ] : ‘
ET(KY = ETITT(Vakak) = ETITT(24K4K) + EP(14K4K) = EP(?4KsK)
EI(K*6)=ETITT()oKyK) = ETITTU(29K4K) + EP(14KyK) = EP(34KK)
P27 EVTU(R4GIZETITT (Y eKOeKR)=ETTTT(39KNIKR) + EP (1 +KQsKR)=FP {3 4KQyKR)
ETt13) = n,n ,
CALL VADDC (SUMTs F1e SUMTs 13)
Y2 COMTINMUE
CAlLlL VSUBC (RR, sUMn, nR, &)
CaLl VSURC (RYT, SUMTIs RT,y 13)
13 CONMTINUE
CALL MSAR (ATAAT. 4 64BRy Ay 1s RCJPy ¢ 64 3)
CALLL. PRMAT (RCIP, 4y 1) : :
Call. FORMV (V124 Te 1y ?)
Cat L FORMY (yiae Te 1y 3)
Catl FORMN (Qe VI12+ V17)



14

18

17

200
201
2072
203
204
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PRMAT (Qs 13e 6)

MSATR (Qy 13s 6e Ns 134 6y 0TOY 13, 13y 6)
PREMAT (QTns A &) ‘

MATTINV (QT04AaRAT404NETFRyIPIVI4yINNET +6,41SCAT)
PRMAT (QTn, A, &)

MSABT (QTNs 64 Ay
REAN 2024 RJA
CALl. PRMAY (RJA,
PRINT 2034 M(

CA 146 v = 1, 7
CHLL BiXTw (B, N, Ty MOy
GO 14 K = V¢ 3

RFEAD 207, R’
O 16 L = 14 3
IRA (NWKel) =
CO 18 K = Y4 3 )
RTLK) = TRA(Vskak) = TRA(21K4K) = P{14K4K) ¢ P(29KsK)
RI(K+AIZTIRA(1eKeK) = TRA(3eK4K) = PllsKaK) ¢ P(34KyK)
KP = 4=K

CALL POR (KP, kD, KR} :

BY(K+3)=TRA() 4kQ4KR) «TRA(D1KQIKR) =P (14KN9KR) +P (P4 KA4KR)
BY(K+Q)=TRA()4KN4KRY = IPA(39KAN4KR) =P (1,KNyKR) ¢P (3,KO KR}

CAL L
CALL
CALL
CALL
CAaLL

Cagl. Qy 13, 69 QTAQT, 64 139 6)

3,0 1)

RCAFy RN

D{t)

READ 203,
BT(13) =
CALL
CALL MSAR

DO V7 K =

ICrP (KK}

1CrP(142)

1CCP(143)

1IceP(Pe3)

CALIl. PRMAT
FORMAT (F
FOQMAT (3F
FORMAT
FORMATY
FORMAT
ENN

(F1
(1+

SC

<C
PRMAY

(RT. 13,
(QTQNT, Ay
1 3
VCTRTY (K)
VCTRT (4)
VCTRTI(5)
VCTRT (/)
(1CcPy 1,
0069 TIO)
10,2y

1)
13,

3)

(3F20,6)

Neh)
1)

RIe 139 1y VCTRI, 64 134 6)
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' SURROUTINF FORMT (Te My X, Go W)
[ X RN RN R RN NIRRT R R XX RO R X RS R R IR R IR R R R R R R RN, R R RN R RN R R X

#  THTS SURROUTINF FARMS THE MATRTIX Yo
OSSR G R BB BRI B R R e SRR OB PR BE LR BN BE BB E RSB RB LR ERE

DIMENSTON T(343,3)

SINX = SIN(X) %
SING = SINI(G) k3
Sing = STN(L) ®

T(Mele1)=COSX%rNSG
T(NeY192)=COSX#QTNG2S TN
T(Me143)=COSXHQTNGHCNSH
T(Ng2¢1)=SINXHCNGG
T(Me2yP)=STMNX#CTAGHS TN
T(Ng?2e3)=STNXEQTNGHECNASIH
T(re3el)==SING

T (\10107)=COSG*<TNUV
T(Ne3e3)=r0SarnsU
"RETURN % END

cosSX = CnS(X).
CnoSG = CnS(6)
cosSU = CoS(y)

- STNX#COSU
4 STINX#STNU

&+ COSX#CASU
- COSX#SINU

SURRQUTINF FORMN (Qs V1?2, V113)
#%%%#%G%%%%ﬁ%*%%&#&ﬁ%%#%%&%§%*****§%&Q&*#%*%&&*#%%#%*%##%*#

# THIS SURROUTINE FnRMS TWE MATRTX Q.
T AE A I AR TR S S e A S L S S S T SR S S L R

‘ , DIMFENSTION Q(13,A)9 V12(646) e VI3(646)
DO Y K = Yo A
PN YT L =1y 6
QUKsL) = VY2 (K1)
Y GUK+HyL)=VI3 (K4l
Q(13+1) = 1,0 ¢ " N{1342) = 1len %
N(13¢4) = 0,0 % N{1348) = 0,0 %
RFETURN 3 FNN

SURROUTINF FORMYV (v, T,

My N

N(13,43)
Q(13.6)

4

L

O
.
>

LR RN LR RTE R R TR R R R NI IR R R R RTR R R RO R R T R R R . R ST 9
#  THIS SURROUTINE FAoMS THE MATRITY Ve
$b 38 38 34 35 38 2B 24 35 2 38 45 3P 8 2% 35 38 27 26 30 25 45 3 48 Y 45 35 3 35 3F b 2 35 2E 3 S0 I 34 3 B4 3h 3E 2 3P 25 3F 35 46 48 46 3P S $H 2 4F LE A 3

PIMERNSTION V(6eA)y T{39393)

Nno 1 K = 14 3

DO YV L = e 3
Y Viwsl) =

CO 2 L = 44 &

LP = 7-L

_ CALLL POR (LPy 1Ny 1R
o 2 K = 14 3

TIMGK I Y¥T (Makol) = TINGJKyL)I#T(NyKyL)

&

7 V(KaL)=2oePR (T MgKel DY HT(MqKgt R)Y=T(NgKeLM)#T(NeK¢LP))

DO?K:-'/.;’()



KP = Kwbh
CAILL PAR (KPP, KO, KR)Y
CO ¥ ¢ = 1 3 ,
3 VIKaL) = TIMyKNaLI#T(MyKRGL) = T(NyKQyLY#T(NGKRyL)
DO 4 K = 4y 4 . '
KP = K=3
Call POR (kP, k0O, kR)
DO 4L = 4y 6 '
L = 7L
CAL L. POR (LPy 1Oy LR
4 V(Kell) = T(MeKnelRYET(MoeKReLA) + T(MeKQLO)#T(MeKRWLR)
” «T(NeKN LRI BT (NeKRILNY = T{NIKQ«LQ)#T(NIKRLR)
RETIHRN T E A

SURRAUTINF PAXTH (Py No Ty MCys RCJIPy RIA) :
P R R R R LR IR R R R R R R R R R R R R LR R R TR TR R R B R R - R TR R R R R R R R R X F R R
# THIS SURROUTINF ApDL IFS THE PARALLEL AXIS THFOREM, *
%%%**-}%*%_%%%H‘c*%%Hi«-{Hﬁ-41-?.‘c&*-u-4}&*4*%%%H}45&ﬂ»%gHH?*%%%&&%%‘e#%#%%&%%&%
DIMENSTION P{34343)y PN(RI93)e RCA(3) s RCU(3I) g RCUP(I)
2 RUA(R)y T(333,3)9 TH(973)
RFE AL MC
PRINT 1014 MC
CALL DQMATv(QCID, Qg 1)
CAl)l. PRMAT (RJA, 34 1)
DO Y K = 1y 3
DO Y L = 14 3
1 TN(KelLY = T(Newol)
CALL PRMAT (TN, 3, 2
CALL MSAB (TN -« ¢ 3¢ REJPy 39 1e RCJe 39 3¢ 3)
CAILL PHMAT (RCJs 3+ V)
CAL L VADNDC (RC.Je RJAS NCA, )
Cat L PRMAT (RCA+ 3+ 1)
CALL POQR (IPy 1Ny TR)
PRINT 100« IPg TNy IR
100 FOOMAT (10%,e 31A)Y '
P(MyTP41P) Mes (RCA(TQYSRCA(TQY + RCA(TIRYI®RCA(IR)Y)
PNy TNTIR) Mr # (REACTOYHRCA(IR))
P(MsTRS IO P(MeTNeTRY
. PRINT 01y P(NJTPsTPYs P(NsTQsTRY
101 FOPRMAY (1nXe 2F2na17) '
-2 CONTINUE

i oun

BOH 3 K = 1y 3
NO 3 L = Ve 3

7 PN({K L)Y = p(NQKQL)
CAtl. PRMAT (PN, 3Is 3)
RETURN % END



SUHRROUTINF PAR (TP. TQ, IR)
[ 2221 R R R R R R R R R R R R R R R TETR B L R R RN R BT R R R Ry R R R R N R R, R R R R XY
#  THTS SURROUTINF DETFRMIMES THE TNTEGERS Q ANP R FRAM P, #
&%&ﬁ%**%%#%#%ﬁﬁﬁﬂﬁaﬁﬁﬁﬂﬁﬁﬁﬂﬁﬂﬁw**%&**%%*%##**&*%%**%%%#**G%

IF (TP.EQ.1)Y Gn 7O 1

IF (TP.EQ.?) Gn YO ?

IF (IP.FQ.3)Y GN TO 3

1 10=> ® TR = 2 ) GO TO &
? 10 =1 % TR = 1 5 GO0 TO 4
3 I0 =1 LN IR = »
4 COMTTNMUE

RETURN % END

SURROUTINF PRMAT (ATRIXy Kal.)
#%%%%%#&%%%%%%%*%%%#&%*%é**%%%%ﬂ%%%#&*%%#%%%*n%Q#%#%*%%%&%u
# 0 OTHIS SHARNUTINFE PptnTe ANY K RY L MATRTIX, : o
[ R R R R R R IR R R TR R R R R TR R R X PR AR Y. X IR R R R T R LR RN RN R R R KX X X E R

DIMENSTON ATRIY (K4L)

pRMT 101

DO Y M = 14K

1 PRYNT 1004 (ATORTX(M¢N)4 N = YyslbL)
100 FORPMAT (I1Xy AF20,12) '
10Y FOOMAY (/¢ 11X, 7Y (1H3HY)
RETURN % END
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